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Abstract The research supported by this grant aimed to solve moving interface
problems with two flexible computational modules: semi-Lagrangian contouring (SLC)
methods which evolved an interface with a given velocity field, and problem-dependent
evaluation of the velocity of a given interface. These modules, with associated engines
for fast computational geometry, constituted a highly effective toolbox for evolving
an implicitly represented interface through arbitrary topology under a given velocity
functional. The first module was extended with linearly-implicit SLC methods which
evolved stiff interfaces under geometric velocities such as mean curvature and surface
diffusion, and fourth-order SLC methods which delivered greatly improved accuracy.
The second module was extended with fast solvers for elliptic systems which evalu-
ated interface velocities determined by quasistationary physical interactions off the
interface, and enabled the solution of key models such as Ostwald ripening, elastic
membranes in Stokes flow, and crystal growth.

Research results

A moving interface is a collection Γ(t) of nonintersecting oriented closed curves or
surfaces with an outward unit normal N , curvature C, and normal velocity V , speci-
fied as a functional of Γ(t). Examples include passive transport where V = F (x, t) is

given; geometric motion V = (p(N)−q(N)C)N ; Ostwald ripening V =
[
∂u
∂N

]
N = ΛC,

where ∆u = 0 off Γ(t), u = C on Γ(t), and Λ is the Dirichlet-Neumann operator; and

models for crystal growth V =
[
∂u
∂N

]
N , where ut = ∆u off Γ(t) and u = f(N,C, V ) on

Γ(t). We reformulate moving interface problems as evolution of an implicit represen-
tation function ϕ whose zero set is Γ(t), plus some densities defined on Γ(t). Then at
a new time level t+k, the new implicit representation is given by ϕ(x, t+k) = ϕ(x̃, t)
where x̃ is the foot of the characteristic ending at x.

Semi-Lagrangian contouring (SLC) is reviewed in §1.1, applied to Stokes flow in
§1.2, and to 3D viscoelastic flow in §1.3. Two results in fast computational geometry
are reported in §1.4, and employed in §1.5 for fourth-order SLC. Linearly-implicit
SLC for stiff problems is presented in §1.6.
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1.1. Semi-Lagrangian contouring Semi-Lagrangian contouring (SLC) delivers a
coherent and widely usable black–box module, which moves an interface through ar-
bitrary topological and geometric events, with minimal information about the specific
physical problem and the interface velocity V . It incorporates implicit interface evo-
lution, semi-Lagrangian advection, fast geometric algorithms and fast elliptic solvers.

Each point of a moving interface Γ travels along a characteristic curve of the
interface velocity V , carrying a zero value of the signed distance

d(x) = ±min
γ∈Γ
‖x− γ‖.

We extend the velocity V smoothly to a global field W , move all values of d along
approximate characteristics of W , and extract the resulting interface by contouring
semi-Lagrangian approximate advection formulas such as the first-order Courant-
Isaacson-Rees (CIR) scheme

ϕ(x) = d(x, t+ k) ≈ d(x+ kV (x, t), t). (1)

The analogous second-order scheme couples the first-order predictor (1) with a trape-
zoidal corrector based on the averaged velocity. It combines the unconditional stabil-
ity of the first-order scheme with the dramatically reduced dissipation of the trape-
zoidal rule. Exact distance finding in a dynamic quadtree data structure or an adapted
Voronoi diagram eliminates the usual semi-Lagrangian interpolation error. The in-
terface velocity is extended by a numerical Whitney extension, which satisfies a max-
imum principle and removes the discontinuities of the usual nearest-point extension.
After evolving the implicit representation ϕ, the new interface is extracted by sub-
grid refinement of a tree mesh: given a signed distance function ϕ(x, tn), we build
a tree at time tn+1 = tn + k by recursive evaluation of g(x) = ϕ(s, tn) at projected
points s = x + kW (x, tn). SLC methods converge to correct viscosity solutions for
difficult moving interface problems involving merging, faceting, transport, nonlocality
and anisotropic curvature-dependent geometry [12].

1.2. Stokes flow with elastic interfaces Slow viscous flows which satisfy the
incompressible Stokes equations

−ν∆u +∇p = F, ∇ · u = 0

commonly occur in biological moving interface problems, for example blood flow, cell
movement, and atherosclerosis. The force F in these equations is often modeled by a
measure F = fδΓ when the interface Γ has a complex internal elastic structure. We
have developed a fast solver for Stokes flow with elastic interfaces, by combining semi-
Lagrangian interface evolution with a fast new Ewald summation scheme [3]. The
semi-Lagrangian transport of interface densities allows a remarkably straightforward
computation of stretching energy, while the new fast summation technique unifies
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several well-known local correction techniques for singular integral operators. Our
technique remains highly effective with discontinuous data, where standard Stokes
solvers encounter substantial difficulty. Figure 1 exhibits circularizing and oscillating
interfaces under Stokes flow, accurate to one part per thousand.

Figure 1: Circularizing and oscillating interfaces in Stokes flow.

1.3. 3D viscoelastic flow with structured interfaces The semi-Lagrangian
method has been implemented in 3D and coupled with a viscoelastic fluid simulator
to produce complex and realistic fluid simulations [1, 2]. It is publicly available as
part of the open-source Berkeley Fluid Animation and Simulation Toolkit (BFAST)
on SourceForge. The semi-Lagrangian approach is capable of tracking local features
such as the surface colors shown in Figure 2 or the elastic energy density of a tensile
membrane [3].

1.4. Computational geometry Operations on implicit representations are widely
useful in computational science. We are extending our efficient 2D piecewise-linear
modules for implicit geometric operations such as contouring, distancing and exten-
sion, to 3D higher-order piecewise-polynomial interfaces.
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Figure 2: Paint balls and merging sprays in 3D viscoelastic flow.

Accurate contouring The general contouring problem, finding a smooth geo-
metrically constrained approximate zero set of a function which can be evaluated at
arbitrary points, occurs frequently in computational science and requires a robust
package. An ideal contouring package would accept function values (and derivatives
if available) at arbitrary points, and produce a piecewise-smooth approximation to
the zero set, with corners where necessary. Geometric constraints, such as bounds
on curvature away from corners, are vital in applications like computer-controlled
machining. They pose a major complication for existing public-domain contouring
software. We are finalizing new C/C++ packages for constrained piecewise-smooth
contouring in two and three dimensions, based on new local contouring schemes for
Bezier patches and new methods of scattered data interpolation [6, 7].

Fast distance to Bezier curves Computation of distances to an explicit surface
is a key step in implicitization, and extremely expensive if implemented directly. Fast
distancing algorithms are available for standard piecewise-linear polygonal surfaces.
Smoother piecewise-polynomial Bezier surfaces would provide higher accuracy, but
computing distances to these surfaces has been intractable. The classical Voronoi
diagram provides efficient algorithms for distance finding to “sites” which are points in
space, but fails when the sites are Bezier segments of a piecewise-smooth surface. We
have developed a fast Voronoi-based distance finding algorithm for Bezier segments,
which dramatically speeds up the computation of distance to piecewise-polynomial
curves and surfaces [5]. Figure 3 demonstrates the speed and robustness of our
algorithm, which requires no more than five elementary distance finding steps per
evaluation.
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Figure 3: Fast distancing to piecewise-polynomial curves: the background shading
from white to black indicates regions where the algorithm requires 1 to 5 elementary
distancing operations respectively.

1.5. Fourth-order accurate SLC methods New SLCmethods based on piecewise-
cubic contouring, fast distancing and fourth-order time discretization dramatically re-
duce the number of degrees of freedom required to represent complex nearly-singular
interfaces (see Fig. 4)[8, 10].

Figure 4: Fourth-order cubic approximation of a nearly singular contour (right) is
far more efficient than second-order linear approximation (left).

Fourth-order time discretization integrates the characteristic terminal value prob-
lem

x′(s) = W (x(s), s) x(t + k) = x

backward in time till s = t. Input data consists of x(t + k) = x at the terminal time
t+k, and W (x, t) at the initial time t. Subsequent values of W (x, s) become available
only after each new approximation of x(s) has been computed. The mismatch in time
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between x and W requires unconventional time discretization schemes such as the
first-order CIR predictor

x0 = x, W10 = W (x, t), x1 = x− kW10

and the second-order trapezoidal corrector

W10 = W (x1, t), W01 = W (x0, t + k), x2 = x− k

2
W01 −

k

2
W10.

Thus we derive higher-order correctors

W20 = W (x2, t), x3 = x− αkW20 − βkW10 − γkW01

by the method of undetermined coefficients [10]. Numerical computations of passive
rotation and geometric evolution demonstrate the efficiency of fourth-order SLC for
moving complicated smooth interfaces under nonstiff velocity fields (Fig. 5).

(a) (b) (c)

Figure 5: High-order semi-Lagrangian contouring evolves smooth and nonsmooth
shapes accurately under smooth geometric velocity fields.

1.6. Stiff problems The interface velocity V often depends on the moving interface
Γ(t) in a stiffly-stable way. Local geometric problems such as mean curvature flow V =
−CN and surface diffusion V = (∆C)N are equivalent to stiff nonlinear parabolic
PDEs for the implicit interface representation ϕ. Nonlocal problems of materials
science (crystallization, Ostwald ripening, Hele Shaw flow) determine the interface
velocity from a global system of PDEs with stiff geometric boundary conditions. Our
new stiffly-stable implicit SLC methods and damped Newton-Krylov solvers provide
efficient solution methods for stiff moving interface problems.

For stiff moving interface problems, standard explicit formulas such as first-order
CIR scheme

g(x) := ϕ(x, t + k) = ϕ(x− kW (x, t), t)
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are stable in the maximum norm but not in norms involving higher derivatives. The
resulting interface oscillations can be stabilized by taking small time steps or frequent
smoothing.

Efficient solution of stiff problems requires implicit time discretizations such as
the first-order implicit formula

g(x) = ϕ(x−EgVg(x, t+ k), t) =: F [g](x)

in which the known velocity W (x, t) is replaced by the unknown velocity W (x, t+k) =
EgVg(x, t + k). The velocity W (x, t + k) depends on the unknown implicit interface
representation g(x) ≈ ϕ(x, t+ k) twice. The operator Eg extends functions from the
zero set Γ of g to the whole ambient space, while the problem-dependent interfacial
velocity Vg depends stiffly on derivatives of g. We solve the implicit interface motion
by damped Newton iteration and Krylov space methods, and obtain excellent results
for mean curvature flow. Nonlocal problems are treated by the chain rule and a
library of basic Frechet derivatives.

Damped Newton iteration Since Vg usually depends on geometric derivatives of
g such as

N =
∇g
‖∇g‖ , C = ∇ ·N,

the simple fixed point iteration g ← g − F [g] will not converge. Thus we employ
damped Newton iteration

DF [g]h = −F [g], g ← g + λh.

HereDF [g] is the Frechet derivative of F at g. The damping parameter λ is adaptively
chosen to guarantee steady decrease of the residual: ‖F [g]‖ ← ‖F [g]‖/2. Damped
Newton iteration preconditions the loss of derivatives in each F evaluation by the
inverse Jacobian DF [g]−1, yielding a modified fixed point iteration with improved
convergence.

At each damped Newton step, the variational equationDF [g]h = −F [g] is approx-
imated by a large sparse system of linear equations and solved by linear or nonlinear
Krylov space methods. Linear methods such as GMRES converge faster, but each
step requires an expensive evaluation of the Jacobian DF . Nonlinear methods require
only F evaluations.

Implicit SLC with damped Newton iteration, solved by Krylov space methods,
deliver efficient algorithms for stiff geometric moving interface problems [8, 11]. Nu-
merical results for mean curvature flows of smooth and nonsmooth objects are shown
in Fig. 6.

Chain rule The Frechet derivative DϕV involved in second-order elliptic moving
interface problems (such as Ostwald ripening V = ΛϕC) is a problem-dependent
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Figure 6: Implicit semi-Lagrangian contouring evolves both circles (superimposed on
unstable explicit results) and nonsmooth shapes stably under mean curvature flow.

third-order linear pseudodifferential operator. It can be constructed from problem-
independent components by the chain rule:

DϕV = Dϕ(ΛϕC) = DϕΛϕ(C) + Λϕ(DϕC).

Hadamard’s variational formula implies an augmented elliptic system for the first
component DϕΛϕ, derived by implicit differentiation of the PDEs and boundary
conditions which define Λϕ. The second component DϕC is a problem-independent
local geometric sensitivity. Efficient problem-independent modules can compute and
assemble these components of the Frechet derivative for a wide variety of stiff moving
interface problems.

2. Fast elliptic solvers Elliptic partial differential equations (PDEs) for the inter-
face velocity are converted to first-order systems in §2.1 and solved by finite differences
in §2.2. New Alternating Direction Implicit (ADI) iterations for elliptic systems are
presented in §2.3, and generalized Ewald summation for elliptic systems in §2.4. Two
nonuniform fast Fourier Transforms for piecewise-polynomial distributions are de-
scribed in §2.5 and §2.6, and employed in §2.7 and §2.8, to speed up locally-corrected
boundary integral solution of elliptic systems in complex domains.

2.1. First-order systems Industrial moving interface problems (such as solidifica-
tion, fluid-structure interaction and crystal growth) determine the interface velocity
V by solving systems of PDEs on the moving phase domains, with boundary con-
ditions on fixed and moving boundaries. Moving interfaces with our SLC methods
relies on a problem-dependent module which evaluates the interface velocity V of
the interface Γ = {ϕ = 0}. Implicit time discretization of stiff problems requires
the Frechet derivative DϕV with respect to the interface representation ϕ, which
satisfies additional PDEs. New locally-corrected spectral boundary integral methods
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[13, 17, 16] solve general elliptic systems of PDEs with complex interfaces: Linear
constant-coefficient elliptic systems (such as Maxwell, Stokes, or linear elasticity) are
converted to overdetermined first-order systems

Au(x) =
d∑

j=1

Aju,j(x) + A0u(x) = f(x) in Ω, Bu = g on Γ = ∂Ω (2)

where each Aj is a p× q matrix, B = B(γ) is an r × q matrix for each γ ∈ Γ, and u
is a q-vector. Such systems are amenable to new iterations and simple new boundary
integral solvers.

2.2. Finite difference methods A new piecewise-polynomial interface method
for discretizing elliptic systems with complex interfaces between high-contrast mate-
rials is derived and analyzed in [4]. A Krylov-accelerated interface multigrid approach
solves the new discretization efficiently. Stability and convergence are proved in one
dimension. Numerical experiments with complex two-dimensional interfaces (see Fig.
7) and coefficients varying over eight orders of magnitude demonstrate the accuracy,
efficiency and robustness of the method.
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Figure 7: Solution of elliptic problems with complex interfaces.
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2.3. ADI methods for elliptic systems Classical ADI methods provide the
oldest essentially optimal iteration, for separable second-order positive definite elliptic
problems

Au+Bu = −∂x (α∂xu)− ∂y (β∂yu) = f,

in rectangular two-dimensional domains Ω ⊂ R2. With scale 1/s, these iterations
take the form

(
s2 + A

) (
s2 +B

)
um+1 =

(
s2 − A

) (
s2 − B

)
um + 2f

and modify each Fourier mode eik
Tx with wavenumber k = (k1, k2) by a symbol σ

which damps error rapidly over a geometric range of wavenumbers. For example, in
the Poisson equation |σ(k)| ≤ 1

3
whenever 1√

2
≤ |k|

s
≤
√
2. Thus varying the scale s

geometrically gives O(ǫ) damping in O(logN log ǫ) sweeps. Each sweep approximates
(A + B)−1 by a product of one-dimensional operators (s2 ±X)±1 and requires time
proportional to the problem size, making ADI an essentially optimal iteration.

We derive ADI methods for general elliptic systems (2). Ellipticity implies that
in any bounded domain Ω with boundary Γ = ∂Ω and inward normal vector field n,
the inward normal derivative of u is determined by values and tangential derivatives
of u on Γ:

∂nu =
∑

i

ni∂iu = A†
n (f − AT∂Tu− A0u) . (3)

Here the left inverse A†
n of An =

∑d
j=1 njAj exists by ellipticity, and AT∂T is the tan-

gential part of the operator A = An∂n + AT∂T . Given the inward normal derivative,
the solution can be approximated by Taylor expansion on a strip near the boundary.
Marching inward with repeated Taylor expansion solves the boundary value problem,
and explains heuristically why boundary value problems are well-posed for elliptic
systems. Thus our ADI methods sweep inward from the boundary to provide conver-
gent three-step iterations for elliptic systems: 1. Choose sweep direction n pointing
in from the boundary and rewrite the system in normal/tangential coordinates (3).
2. Left-invert An and shift by the inverse length scale s to get the equivalent system

su+ ∂nu+B+
0 u = su+ f −BT∂Tu+B−

0 u. (4)

3. Solve Eq. (4) inward from the boundary across the domain, with step size pro-
portional to 1/s. Repeating these three steps with a sequence of directions n and
geometrically varying scales s gives a full ADI iteration.

Convergence In rectangular domains with periodic boundary conditions, a col-
lection of sweeps with different directions n reduces each error mode eik

TxI by a
matrix-valued symbol

σ(k) =
∏

n

(s+ ikn +B0)
−1 (s− iBTkT ) .
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Employing a larger set of directions improves the convergence speed exponentially:
one pass of ADI iteration reduces the error by 0.5 with 4 directions, 0.1 with 8
directions, and 0.005 with 16 directions. Since this error reduction is independent of
mesh size (see Figure 8), the new ADI iteration is an essentially optimal solver for
elliptic systems in simple domains [14].

4 directions 8 directions 16 directions

Figure 8: ADI error reduction symbol σ versus wavenumber k for the Poisson equa-
tion on a N = 2562 mesh, solved with 4, 8 or 16 directions in O(N logN) work.

2.4. Generalized Ewald summation For elliptic systems with complex inter-
faces, locally-corrected spectral methods [13, 17, 16] employ the periodic fundamental
solution

S(x− y) =
∑

k∈Zd




d∑

j=1

ikjAj + A0




†

eik
T (x−y) =

∑

k∈Zd

a(k)†eik
T (x−y), a† = (a∗a)−1a∗

of the first-order system (2). Generalized Ewald summation [13] extracts a global
rapidly-converging Fourier series

Sτ (x− y) =
∑

k∈Zd

e−τa∗(k)a(k)a(k)†eik
T (x−y),

mollified by a matrix exponential e−τa∗(k)a(k). The error term has a formal asymptotic
expansion as τ → 0

Eτ = S − Sτ = (I − e−τA∗A)(A∗A)−1A∗ = τA∗ − τ 2

2!
(A∗A)A∗ + · · · (5)

which corrects via an asymptotic series of local differential operators. These new
mollification and local correction techniques combine with the fast Fourier transform,
Padé codes for small dense matrix exponentials, and high-order uncentered differ-
encing to solve first-order elliptic systems in periodic geometry. A simple algebraic
algorithm automatically computes local correction coefficients which achieve high-
order accuracy at minimal cost.
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Locally-corrected spectral volume potentials Fast solvers for elliptic systems
(2) employ the volume potential

V f(x) =
∫

Ω
S(x− y)f(y) dy

to eliminate the right-hand side f . Such potentials solve elliptic systems with piecewise-
smooth right-hand sides which are discontinuous across the interface Γ = ∂Ω. Locally-
corrected spectral methods treat the interfacial discontinuities as distributions, con-
verting the problem to an inhomogeneous system Au = F with a singular right-hand
side F = fχΩ on a fixed enclosing domain B ⊃ Ω. Here f is smooth, while the
characteristic function χΩ of the domain Ω jumps from 1 to 0 across the interface
Γ and includes all the singularities of the data. Generalized Ewald summation lo-
calizes and separates the singular interface distributions to solve the inhomogeneous
system accurately and efficiently. The Fourier series Vτ = Sτ ∗ F is computed by a
geometric nonuniform fast Fourier transform (GNUFFT) [9, 15]. The local correction
(5) separates smooth from nonsmooth parts of the solution by the product rule for
derivatives. For example, the first-order correction Eτ = τA∗ +O(τ 2) yields

τA∗(fχΩ) = τ




d∑

j=1

A∗
j(f,jχΩ + fnjδΓ) + A∗

0fχΩ




where n is the outward unit normal to Ω and δΓ is a delta-function on Γ. Since the
enclosing domain is fixed and simple, the resulting locally-corrected volume potential
capitalizes on fast solvers for simple problems to achieve optimal efficiency [17].

2.5. GNUFFT by B-spline smoothing Fast solvers based on Ewald summa-
tion require the computation of accurate low-frequency Fourier coefficients of sin-
gular distributions such as δ-functions spread over curves, surfaces, and other lower-
dimensional geometric objects. Standard nonuniform FFT (NUFFT) algorithms work
only for point distributions. New geometric NUFFTs or GNUFFTs compute accurate
Fourier coefficients of a piecewise-polynomial distribution supported on arbitrary-
dimension simplices scattered in D-dimensional Euclidean space. Each singular term
is mollified with a B-spline smoothing kernel, evaluated on a nearby uniform mesh,
transformed with a standard FFT, and deconvolved in real space. The resulting
algorithm displays dramatic speedups over direct evaluation, reduces to the stan-
dard NUFFT in simplex dimension zero, and provides a highly effective tool for the
locally-corrected spectral solution of elliptic systems [9].

2.6. GNUFFT via the butterfly algorithm A new GNUFFT based on the
butterfly algorithm generalizes pointwise NUFFTs based on low-rank approximations
such as the Taylor expansion

etisj = etiσ
m∑

α=0

(ti − τ)α(sj − σ)α

α!
e−τσeτsj +O(ρm/m!),
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valid in any Heisenberg rectangle |t− τ ||s − σ| ≤ ρ. The butterfly GNUFFT builds
moments due to sources sj in Heisenberg rectangles with minimal span in source
space, recursively merges and shifts them to maximize source span and minimize
target span, and evaluates the final expansions at targets in optimal O(N logN) time
[15]. The recursion is illustrated in Fig. 9.

Figure 9: Recursive subdivision of a spiral of simplices for the butterfly GNUFFT.

2.7. Locally-corrected spectral boundary integral solvers A boundary in-
tegral equation is derived in [13] with the periodic fundamental solution S(x− y) of
the elliptic system (2): multiplying Eq. (2) by S, integrating over Ω and applying
Gauss’ theorem yields

1

2
µ(γ)−

∫

Γ
P (γ)S(γ − σ)An(σ)µ(σ) dσ = ρ(γ), An(σ) =

d∑

j=1

nj(σ)Aj . (6)

The new unknown µ(γ) = P (γ)u(γ) = (I − B∗(γ)B(γ))u(γ) is the projection of u
orthogonal to the data g. The right-hand side is a combination of volume and layer
potentials

ρ(γ) =
∫

Ω
P (γ)S(γ − y)f(y) dy+

∫

Γ
P (γ)S(γ − σ)An(σ)B

∗g(σ) dσ.
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Eq. (6) is square, well-conditioned, and amenable to solution by a variety of fast stable
high-order accurate methods. The solution u of the elliptic system (2) is recovered
locally on the boundary by u(γ) = µ(γ) +B∗(γ)g(γ), and globally by integration.

The boundary integral equation (6) is solved with generalized Ewald summation
for S (§2.4), which approximates the kernel K(γ, σ) = P (γ)S(γ − σ)An(σ) by a
global rapidly-converging Fourier series, and converts the integral equation into semi-
separated form

(I −MRT )µ = ρ. (7)

Here Tρ evaluates Fourier coefficients of (Anρ)δΓ, R is the filtered inverse of the
elliptic operator in Fourier space, and M evaluates and projects Fourier series on Γ.
Since (I −MRT )−1 = I +MR(I − TMR)−1T, the semi-separated form (7) can be
solved in Fourier space, where the matrix of TMR is

Γ̂(k, q) = 2
∫

Γ
An(σ)e

−i(k−q)T σ dσe−τa∗(q)a(q)a∗(q).

This matrix contains the elliptic system, interface and boundary conditions. Its
regular data structure is amenable to fast randomized low-rank approximation and
efficient solution. Local corrections are higher-order in the small parameter τ , and can
be applied locally after each Fourier space iteration. The resulting boundary integral
solver is efficient, stable, and as accurate as the underlying interface representation.

Frechet derivatives Our boundary integral approach expresses the interface ve-
locity V by a sequence of three explicit differentiable steps which facilitate the ap-
proximation of Frechet derivatives. First, the solution u of the elliptic system is a
local function

u(γ) = (I −B∗B)u(γ) +B∗g(γ) = µ(γ) +B∗g(γ)

of µ on the interface. Its values off the interface depend only on the known values on
the interface. Second, the integral density µ satisfies the boundary integral equation

(I −MRT )µ = ρ,

where the operators M and T depend on ϕ. The damped pseudoinverse R of the
elliptic operator A is independent of the interface. Third, the right-hand side ρ of
the boundary integral equation depends on ϕ via integration over the interface and
projection by the boundary matrix B. In moving interface problems, g depends on the
normal n and curvature C, and DϕV involves the corresponding Frechet derivatives.

Given this three-step construction of the solution u, the standard formulaD(X−1) =
−X−1DXX−1 and the chain rule exhibit Dϕµ as a sum

Dϕµ = (I −MRT )−1
(
(DϕM)RT +MRDϕT

)
(I −MRT )−1ρ+ (I −MRT )−1Dϕρ

(8)
of products of complicated operators. Each factor encapsulates the linearized response
of one component of the system to a perturbation in the interface. Eq. (8) determines
the exact Frechet derivative DϕV and generalizes the classical Hadamard formula.
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3. Interactions/Transitions

The PI presented results from this research in seminars and colloquia at FAN2010:
Fluid dynamics, analysis and numerics (Duke University), the IMA Hot Topics Work-
shop on Integral Equation Methods, Fast Algorithms and Applications (Minneapo-
lis), the International Conference on Industrial and Applied Mathematics (Zurich
and Vancouver ), the International Conference on Advances in Scientific Computing
(Brown University), California Institute of Technology, Duke University, Michigan
State University, the National University of Singapore, North Carolina State Uni-
versity, Purdue University, University of North Carolina at Charlotte, University
of California at Berkeley, University of California at Irvine, the American Institute
of Mathematics, the Institute for Mathematics and its Applications, INRIA Paris-
Rocquencourt, and the Statistical and Applied Mathematical Sciences Institute.

Efficient and accurate 2D contouring and distancing codes are nearing comple-
tion, and will soon be open-sourced from the PI’s website [5, 7]. High-order implicit
semi-Lagrangian contouring codes for moving interfaces will follow shortly thereafter
[10, 11]. Geometric nonuniform fast Fourier transform codes [9, 15] and fast boundary
integral solvers for elliptic systems [17, 16, 14] are in progress. The 3D surface track-
ing method described in [1, 2] has been implemented as part of the Berkeley Fluid
Animation and Simulation Toolkit (BFAST), which has been open source released
and is available on SourceForge.
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